10 research outputs found

    Computational and Theoretical Issues of Multiparameter Persistent Homology for Data Analysis

    Get PDF
    The basic goal of topological data analysis is to apply topology-based descriptors to understand and describe the shape of data. In this context, homology is one of the most relevant topological descriptors, well-appreciated for its discrete nature, computability and dimension independence. A further development is provided by persistent homology, which allows to track homological features along a oneparameter increasing sequence of spaces. Multiparameter persistent homology, also called multipersistent homology, is an extension of the theory of persistent homology motivated by the need of analyzing data naturally described by several parameters, such as vector-valued functions. Multipersistent homology presents several issues in terms of feasibility of computations over real-sized data and theoretical challenges in the evaluation of possible descriptors. The focus of this thesis is in the interplay between persistent homology theory and discrete Morse Theory. Discrete Morse theory provides methods for reducing the computational cost of homology and persistent homology by considering the discrete Morse complex generated by the discrete Morse gradient in place of the original complex. The work of this thesis addresses the problem of computing multipersistent homology, to make such tool usable in real application domains. This requires both computational optimizations towards the applications to real-world data, and theoretical insights for finding and interpreting suitable descriptors. Our computational contribution consists in proposing a new Morse-inspired and fully discrete preprocessing algorithm. We show the feasibility of our preprocessing over real datasets, and evaluate the impact of the proposed algorithm as a preprocessing for computing multipersistent homology. A theoretical contribution of this thesis consists in proposing a new notion of optimality for such a preprocessing in the multiparameter context. We show that the proposed notion generalizes an already known optimality notion from the one-parameter case. Under this definition, we show that the algorithm we propose as a preprocessing is optimal in low dimensional domains. In the last part of the thesis, we consider preliminary applications of the proposed algorithm in the context of topology-based multivariate visualization by tracking critical features generated by a discrete gradient field compatible with the multiple scalar fields under study. We discuss (dis)similarities of such critical features with the state-of-the-art techniques in topology-based multivariate data visualization

    Parallel decomposition of persistence modules through interval bases

    Get PDF
    We introduce an algorithm to decompose any finite-type persistence module with coefficients in a field into what we call an {em interval basis}. This construction yields both the standard persistence pairs of Topological Data Analysis (TDA), as well as a special set of generators inducing the interval decomposition of the Structure theorem. The computation of this basis can be distributed over the steps in the persistence module. This construction works for general persistence modules on a field mathbbFmathbb{F}, not necessarily deriving from persistent homology. We subsequently provide a parallel algorithm to build a persistent homology module over mathbbRmathbb{R} by leveraging the Hodge decomposition, thus providing new motivation to explore the interplay between TDA and the Hodge Laplacian

    Parallel decomposition of persistence modules through interval bases

    Get PDF
    We introduce an algorithm to decompose any finite-type persistence module with coefficients in a field into what we call an {\em interval basis}. This construction yields both the standard persistence pairs of Topological Data Analysis (TDA), as well as a special set of generators inducing the interval decomposition of the Structure theorem. The computation of this basis can be distributed over the steps in the persistence module. This construction works for general persistence modules on a field F\mathbb{F}, not necessarily deriving from persistent homology. We subsequently provide a parallel algorithm to build a persistent homology module over R\mathbb{R} by leveraging the Hodge decomposition, thus providing new motivation to explore the interplay between TDA and the Hodge Laplacian.Comment: 37 pages, 6 figure

    Relative-perfectness of discrete gradient vector fields and multi-parameter persistent homology

    Get PDF
    The combination of persistent homology and discrete Morse theory has proven very effective in visualizing and analyzing big and heterogeneous data. Indeed, topology provides computable and coarse summaries of data independently from specific coordinate systems and does so robustly to noise. Moreover, the geometric content of a discrete gradient vector field is very useful for visualization purposes. The specific case of multivariate data still demands for further investigations, on the one hand, for computational reasons, it is important to reduce the necessary amount of data to be processed. On the other hand, for analysis reasons, the multivariate case requires the detection and interpretation of the possible interdependence among data components. To this end, in this paper, we introduce and study a notion of perfectness for discrete gradient vector fields with respect to multi-parameter persistent homology, called relative-perfectness. As a natural generalization of usual perfectness in Morse theory for homology, relative-perfectness entails having the least number of critical cells relevant for multi-parameter persistence. As a first contribution, we support our definition of relative-perfectness by generalizing Morse inequalities to the filtration structure where homology groups involved are relative with respect to subsequent sublevel sets. In order to allow for an interpretation of critical cells in 2-parameter persistence, our second contribution consists of two inequalities bounding Betti tables of persistence modules from above and below, via the number of critical cells. Our last result shows that existing algorithms based on local homotopy expansions allow for efficient computability over simplicial complexes up to dimension 2

    Persistent homology: a topological tool for higher-interaction systems

    No full text
    3nonenoneVaccarino, Francesco; Fugacci, Ulderico; Scaramuccia, SaraVaccarino, Francesco; Fugacci, Ulderico; Scaramuccia, Sar

    Computing multiparameter persistent homology through a discrete Morse-based approach

    No full text
    Persistent homology allows for tracking topological features, like loops, holes and their higher-dimensional analogues, along a single-parameter family of nested shapes. Computing descriptors for complex data characterized by multiple parameters is becoming a major challenging task in several applications, including physics, chemistry, medicine, and geography. Multiparameter persistent homology generalizes persistent homology to allow for the exploration and analysis of shapes endowed with multiple filtering functions. Still, computational constraints prevent multiparameter persistent homology to be a feasible tool for analyzing large size data sets. We consider discrete Morse theory as a strategy to reduce the computation of multiparameter persistent homology by working on a reduced dataset. We propose a new preprocessing algorithm, well suited for parallel and distributed implementations, and we provide the first evaluation of the impact of multiparameter persistent homology on computations
    corecore